In part 1 I wrote about some of the planning and decision making process that went into researching an autopilot system for our boat. In this part we’ll get into the technical details of installing a tiller arm and autopilot drive shelf.
The most difficult part of the job, and one that is custom to every boat, was figuring out how to attach a below-decks autopilot drive to the rudder post. Our boat, a C&C Landfall 38, has a pinched stern and very limited space around the Edson radial drive. The autopilot drive is a surprisingly large piece of equipment – about 3 feet long at full extension, and the motor housing is about 8” tall by 9” long.
The attachment of the end of the ram to the steering system is very important because the drive can exert strong forces on the system (650 lbs of peak thrust with the Type 1 unit). The proper way to attach to the rudder shaft is a tiller arm – typically about a 10” long piece of cast bronze that is clamped around the rudder shaft, above or below the radial drive or quadrant. Edson and PYI’s Jefa manufacture them, as well as Buck-Algonquin.
The only problem was our Edson radial drive was already using up nearly all the vertical space available on our rudder stock – of about 4.5”, it uses up 3.75” (the concave disc model). Standard tiller arms are a minimum of 1.75” in height, too large to fit in 1.25” of space.
I looked at all the available tiller arms, measuring and re-measuring, but none of them would fit. Next I considered more drastic options like whether I could move the radial drive up or down to make more space (I couldn’t), and options like flipping the radial drive or buying a new one with a slimmer profile. I talked to people at both Edson and Jefa and both were very helpful, but ultimately this was a very difficult problem – the C&C Landfall 38 simply was designed with a very confined rudder shaft space.
A slimmer Edson radial drive or a Jefa drive with integrated tiller arm might have worked, but would add a substantial amount of work to the project. A radial drive swap isn’t trivial, and each option also would’ve changed the height of the steering cable track, which would require re-engineering the idler shivs to be at an appropriate angle / height (otherwise the steering cable will chafe).
Continue reading →